
Chapter 1 - Basic Principles
Cartesian product: A × B = {(a, b) ∣ a ∈ A ∧ b ∈ B}

This generalizes to Ak

A0 is the set containing the empty string {ε}

Size of cartesian product: |A × B| = |A| × |B|

Size of union: |A ∪ B| = |A| + |B| − |A ∩ B|

Disjoint union: |A ∪ B| = |A| + |B|

Inclusion exclusion (multiple unions): Subtract intersections of an even number of sets, add
intersections of intersections of an odd number of sets.

|A1 ∪ ⋯ ∪ Am| =
m

⋃
i=1

Ai = ∑
∅≠S⊆{1,2,…m}

(−1)|S|−1|AS|

There are n! lists of an n-element set
There are 2n subsets of an n-element set

There are (n

k
) =

n!

k!(n − k)!
 k-element subsets of n elements

(n

k
) = ( n

n − k
), since we choose the n items not to pick

Pascal's Identity: (n

k
) = ( n

k − 1
) + (n − 1

k − 1
)

Bijections (we assume f : A → B, a, a′ ∈ A and b ∈ B)
Surjective: for every b there exists an a such that f(a) = b

Injective: If f(a) = f(a′), then we must have a = a′

Bijective: f is both injective and surjective (then A ↔ B)
Mutually inverse bijection: f −1 : B → A

Bijective proof: show two sets have the same size by establishing a bijection between them
Provide the function that maps one set to the other and its inverse (define f and f −1)

∣ ∣Binomial theorem

(n

0
) + (n

1
) + ⋯ + (n

n
) =

n

∑
x=0

(n

x
) = 2n

Motivation: this is the number of ways to count 0-element subsets + 1 element subsets + ...
+ n-element subsets, so it is the same as counting all the subsets

Multisets

For any n ≥ 0 and t ≥ 1, there are (
n + t − 1

t − 1
) n-element multisets with t types



(Possibly) prove that f(f −1(x)) = f −1(f(x)) = x

Question strategies
Figure out exactly what each side of the equation counts (choose -> selecting subsets, 2x -> all
possible subsets, multiplication -> and then, addition -> or, etc.), then think of a way to make one
side count the set of the other (combinatorial proof)

For one thing and another thing (possibly more): use a pair or set (ex. (n, A) where n ∈ N

and A is in some set)
Accounting for order overlaps: declare that a sequence is sorted in order

Bijective proofs
Write out everything and try to find a pattern that turns items in one set to another
Then write function that links the sets

Indicator vector: bijection between subsets of a set of size n and the binary strings of length n:
each digit in the string is 1 if the corresponding element is in the subset and 0 otherwise

Indicator vectors that sum to k ⟷ subsets of size k

Establish that a union is disjoint before counting or compensate for the overlap



Chapter 2 - Generating Series
Useful Series

Generating series for the number of subsets of a set of size n

Generating series for the number of multisets with t ≥ 1 types of elements (regardless of size)

Generating Series
Weight function: Function ω : A → N that encodes the "weight" of each element in the set A as
a natural number

There cannot be infinite items of a given weight in a set (i.e. A is countable infinite)

Generating series encode an ordered sequences of numbers as the coefficients of a power
series

Ex. G(x) = g0 + g1x + g2x
2 + ⋯ =

∞

∑
n=0

gnx
n

Generating series of a set: encodes the number of elements of a given weight (with respect to ω
) in the set: A(x) = ϕω

A
(x) = ∑

α∈A

xω(α)

I.e. ϕA(x) = a0 + a1x + a2x
2 + ⋯ =

∞

∑
n=0

anx
n where an = |An|

Geometric Series

1

1 − x
=

∞

∑
n=0

xn = 1 + x + x2 + x3 + …

Binomial Series

(1 + x)n =
n

∑
k=0

(n
k
)xk

Negative binomial series

1

(1 + x)t
=

∞

∑
n=0

(n + t − 1

t − 1
)xn

I.e. the binomial series with a negative integer exponent



We also say [xk]A(x) = ak

Generating Series Lemmas

I.e. We can add generating series together to get the generating series of the disjoint union of the
sets in question
This works on any number of (possibly infinitely many) mutually disjoint sets (Infinite Sum
Lemma)

I.e. we can multiply generating series together
This also shows that a series can be raised to a power: ϕAk(x) = (ϕA(x))k

Multiplication of generating series: (
∞

∑
n=0

cnx
n)(

∞

∑
n=0

dnx
n) =

∞

∑
n=0

n

∑
k=0

ckdn−kx
n

This also works with the cartesian product of any number of sets

The weight function ω∗ for A∗ is ω∗ = ω(a1) + ω(a2) + … (i.e. the sum of the weights of the
elements in each tuple)

Compositions
Composition: finite sequence of strictly positive integers γ = (c1, c2, … , ck)

Here, k ∈ N and each ci ≥ 1 ∈ Z

The size (weight) |γ| of a composition is the sum of its parts

Sum Lemma

Let A and B be disjoint sets with weight function ω. Then we have ϕA∪B(x) = ϕA(x) + ϕB(x)

Product Lemma

Let A and B be sets with the weight functions ω and υ repectively. Define the weight function
η : A × B → N as η(a, b) = ω(a) + υ(b) for all (a, b) ∈ A × B. Then

η is the weight function for A × B

ϕ
η

A×B
(x) = ϕω

A
(x) × ϕυ

B
(x)

String Lemma

Let A be a set with a weight function ω : A → N where no element has weight 0. Then

ϕA∗(x) =
1

1 − ϕA(x)
 where A∗ =

∞

⋃
k=0

A
k (set of all cartiesian products of A)



Set of all compositions: C =
∞

⋃
k=0

{1, 2, …}
k

= {1, 2, …}
∗

=
∞

⋃
k=0

N
k
+

Generating series with respect to size: ϕC(x) = 1 +
x

1 − 2x
 (found from string lemma)

For n ∈ N, the number of compositions of size n ([xn]ϕC(x)) is 1 for n = 0 and 2n−1 otherwise

- There are (
n − 1

k − 1
) compositions of size n with length k

Bijection (rough): Sort A. The gaps between each element in A correspond to the elements in the
composition. The length of the corresponding composition is |A| + 1

Question Strategies
Find the generating series of the set of compositions with simple constraints

Determine the generating series of a single part and/or set of allowed parts (call it ϕ(x))
Describe the set of possible generating series, likely using an infinite union to account for all
sizes
By product lemma, the generating series for the set of compositions of length k is (ϕ(x))k

Constraints on length -> build into exponent (ex. odd length -> ϕ(x)2j+1)

By string lemma, whole generating series is 
∞

∑
k=0

(ϕ(x))k =
1

1 − ϕ(x)
 (solve using algebra)

Multiple types of parts at different spots (i.e. first item is even, each item is equal to the parity of
its index, etc.)

Figure out the generating series for each part
Figure out how to write the set of all compositions using a cartesian product of the sets of
possible items at each index, since the whole composition is just the cartesian product of
these. Cases may be required (ex. odd vs. even length)

Cases: take the union of the sets, which becomes adding the power series together

Use the sum, product, and possibly string lemmas to translate the set definition into a
generating series based on the generating series for each part

Subset with restriction (i.e. how many subsets of N have a given property)
Use proposition 2.23: figure out which property the corresponding composition must have
and count that

Finding [xn] of nested series: figure out the all the possible combinations of indices of the two
series that add to n and add their coefficients

Proposition 2.23
There is a bijection betwen C ∖ {ε} the set of paris (n,A) where n ∈ N and A ⊆ {1, 2, …n}



Chapter 3 - Binary Strings
Binary string: finite sequence σ = b1b2 … bn where each bit bi is either 0 or 1

So, a string of length n is a member of the set {0, 1}n, and the set of all binary strings is

{0, 1}∗ =
∞

⋃
n=0

{0, 1}n

There are 2n binary strings of length n, so the generating series is 1

1 − 2x

Regular Expressions and Rational Languages

Each regular expression R will produce a subset of the set of all binary strings R ⊆ {0, 1}∗ called
a rational language
A regular expression will lead to a rational function R(x)

Sometimes, R(x) is the generating series for R with respect to length

Production of rational languages from regular expressions R ⊆ {0, 1}∗

ε produces {ε}, 0 produces {0} and 1 produces {1}

R⌣ S produces R ∪ S

This union is not necessarily disjoint

RS produces RS (concatenation product (for longer strings))

R∗ produces R∗ =
∞

⋃
k=0

R
k, where Rk is the concatenation product of k copies of R

Ex. (01)∗ produces {ε, 01, 0101, 010101, …}

Unambiguous Expressions
A regular expression R is unambiguous iff every string in R is produced exactly once by R

Regular Expression

A regular expression is one of the following:

ε, 0, or 1
"Union": If R and S are regular expressions, then R⌣ S

Concatenation: If R and S are regular expressions, then RS
We can also have Rk, i.e. R2 = RR, etc
Concatenation product: like cartesian product, except that a string may be produced
more than once, so we may have |RS| ≤ |R × S|

If R is a regular expression, then so is R∗



ε, 0, and 1 are unambiguous
R⌣ S is unambiguous ⟺  R ∪ S is a disjoint union
RS is unambiguous ⟺  |RS| = |R × S| (i.e. no strings are produced more than once)

R
∗ is unambiguous ⟺  all Rk are unambiguous and 

∞

⋃
k=0

R
k is disjoint

Getting Generating Series

Expressions must be unambiguous for this to work

Decompositions
Block: maximal nonempty subsequence of consecutive equal bits
0∗(1∗10∗0)∗1∗ and 1∗(0∗01∗1)∗0∗ build up each string in {0, 1}n block by block (both are
unambiguous)
Prefix decomposition: rational expression A∗B where the string is formed of segments created
by A, with a possible terminal segment B

Usually unambiguous ⟺  only one way for string to begin with a segment of A ∧ string is
produced by B if does not begin with a segment of A

Recursive Decompositions
Happens when a regular expression is defined in terms of itself (ex. S = ε⌣ (0⌣ 1)S)

So, S(x) is defined in terms of S(x) (ex. S(x) = 1 + (x + x)S(x))
We can solve using algebra to find a non-recursive definition

Excluded substrings
σ contains κ ⟺  there exist α, β such that σ = ακβ

Otherwise, σ avoids κ

Getting Generating Series from Regular Expressions

Let regular expressions R and S have rational functions R(x) and S(x)

ε leads to 1
0 and 1 both lead to x
R⌣ S leads to R(x) + S(x)

RS leads to R(x)S(x)

R
∗ leads to 1

1 − R(x)



Essentially, γ are all the ways that κ can overlap with itself (i.e. last n characters are the same as
the first n characters)

We can use a table to find γ

Question Strategies
Add a ε somewhere in a regular expression to account for the fact that it may be the empty string
if performing a block decomposition

Excluded Substrings

Let κ be a binary string of length n, and let Aκ be the set of binary strings that avoid κ. Let C be
the set of nonempty suffixes γ of κ such that κγ = ηκ for some nonempty prefix η of κ. Let C(x)

= ∑
γ∈C

xℓ(γ). Then Aκ(x) =
1 + C(x)

(1 − 2x)(1 + C(x)) + xn



Chapter 4 - Recurrence Relations
Fibonacci Numbers

Definition: f0 = 1, f1 = 1, fn = fn−1 + fn−2 for n ≥ 2

Solving generating series: F(x) = f0 + f1x +
∞

∑
n=2

fnx
n = 1 + x +

∞

∑
n=2

(fn−1 + fn−2)xn =

1 + x +
∞

∑
n=2

fn−1x
n +

∞

∑
n=2

fn−2x
n = 1 + x + x(F(x) − f0) + x2F(x) = 1 + xF(x) + x2F(x) ⟹

F(x)
1

1 − x − x2

We can use inverse roots and some algebra to find that fn ≈
5 + √5

10
( 1 + √5

2
)

n

 (fn is the

closest integer to this expression)

Homogenous Linear Recurrence Relations

Generating series for relations
For the HLRR gn + a1gn−1 + a2gn−2 + ⋯ + adgn−d = 0, we have

∞

∑
k=n

(gn + a1gn−1 + a2gn−2 + ⋯ + adgn−d)xk = 0

Split this into d different summations
Pull the coefficients a1 … ad in front of the series
Write each summation in terms of the whole power series G(x) (recursive)
Derive G(x) using algebra

Homogenous Linear Recurrence Relation

Let g = (g0, g1, …) be an infinite sequence of complex numbers and let a1, a2 … ad be in C. Let
N ∈ Z ≥ d. Then, g satisfies a HLRR if gn + a1gn−1 + a2gn−2 + ⋯ + adgn−d = 0, i.e.
gn = −(a1gn−1 + ⋯ + adgn−d)

Theorem 4.8

Let g = (g0, g1, g2, …) be a sequence of complex numbers with generating series G(x). Then

1. g satisfies the HLRR gn + a1gn−1 + a2gn−2 + ⋯ + adgn−d = 0 for all n ≥ N  with initial
conditions g0, … , gN−1

2. The series G(x) =
P(x)

Q(x)
 is a quotient of two polynomials



I.e. a1gn−1 + ⋯ + adgn−d =

Partial Fractions
Partial fractions must exist for functions that a ratios of polynomials where the numerator has a
higher degree than the denominator
These can be used to deduce a generating series for a more complex function (i.e. a ratio of
polynomials) by splitting it into smaller, more manageable series
Theorem 4.14 (paraphrase): there must be a closed form formula for a given term of a recurrence
relation with a generating series that is a ratio of polynomials

Inhomogeneous Linear Recurrence Relations
Here, gn = −(a1gn−1 + a2gn−2 + ⋯ + adgn−d) − c − dn = 0 for some c ≠ 0, d ∈ Z

More general strategy for solving:
Re-write as gn + a1gn−1 + a2gn−2 + ⋯ + adgn−d = c + dn

Multiply both side by xn

Take the sum over all of n ≥ 2 on each side
Solve the sums and equate the two sides

Polyexps
q : N → C is a polyexp iff q(n) can be expressed as a sum of polynomials, each with a complex
exponent
A function can be eventually polyexp if it is polyexp past a certain point (i.e. if n ≥ N)

Denominator: Q(x) = 1 + a1x + a2x
2 + ⋯ + adx

d

Numerator: P(x) = b0 + b1x + b2x
2 + ⋯ + bN−1x

N−1 where
bk = gk + a1gk−1 + ⋯ + adgk−d

⎧⎪⎨⎪⎩b0 n = 0
b1 n = 1

⋮
bN−1 n = N − 1
0 n ≥ N

Theorem 4.18
Let g = (g0, g1, g2, …) be a sequence of complex numbers. The following are equivalent

1. The sequence g satisfies a HLRR (with initial conditions)
2. The sequence g satisfies a possibly inhomogeneous linear recurrence relation (with

initial conditions) in which the RHS is an eventually polyexp function
3. The generating series G(x) is a rational function



Quadratic Recurrence Relations
A recurrence is quadratic iff its generating series G(x) can be expressed as
A(x)G(x)2 + B(x)G(x) + C(x) = 0, where A(x),B(x),C(x) are power series

Using the quadratic formula, we get G+,G− =
−B(x) ± √B(x)2 − 4A(x)C(x)

2A(x)

The correct series is the one without negative coefficients or exponents

Catalan Numbers

Cn =
1

n + 1
(2n
n
)

These count the number of well-formed parenthesizations, binary trees, lattice paths (n × n grid
without crossing y = x), ways to partition a convex polygon into triangles, etc

Question Strategies
Finding a closed form formula for a given term n of a recurrence relation: this is simply the inside
of the generating series

4. The function g(n) = gn is polexp



Chapter 5 - Introduction to Graph Theory

Note that edges do not have direction and that two vertices can have at most one edge between
them
Adjacent vertices have an edge connecting them. That edge is incident to / joins both vertices
Neighbors (N(u)): set of vertices adjacent to u
Planar: G can be drawn without lines crossing

Isomorphism

I.e. the graphs have the same shape (iso=same, morph=shape)
Isomorphism class: set of all graphs that are isomorphic to a given graph
Every graph is isomorphic to itself (automorphism)

Degree

k-regular graph: every vertex in G has degree k

Complete graph: every set of distinct vertices is adjacent (there are (k

2
) edges)

Bipartite Graphs

Graph

A graph G is a finite, nonempty set of vertices V (G) together with a finite, nonempty set of
edges E(G), which are unordered pairs of distinct vertices.

Isomorphism

Graphs G1 and G2 are isomorphic if there exists a bijection f : V (G1) → V (G2) such that
vertices f(u) and f(v) are adjacent in G2 ⟺  they are adjacent in G1

Handshaking Lemma

For any graph G, we have ∑
v∈V (G)

deg(v) = 2|E(G)|

Bipartite Graph



n-cube: Graph where the vertices are at each position in {0, 1}n and edges connect vertices with
exactly one differing digit

Specifying Graphs
Name Description

Adjacency
Matrix

Matrix with rows and columns corresponding to vertices; the overlapping entry is 1
if there is an edge and 0 otherwise

Incidence
Matrix

Matrix where rows correspond to vertices and columns correspond to edges; if the
edge is incident to the vertex, the entry is 1, 0 otherwise

Adjacency
List

List of tuples of each vertex and the list of its neighbors

Paths and Cycles

Spanning subgraph: The subgraph has all the vertices from the original graph
Walk: sequence of alternating adjacent edges and vertices

Length: number of edges in the walk
Closed walk: the walk ends at the same vertex it started at

A graph G that can be partitioned into two sets A and B such that all edges join a vertex from A
to B. A complete bipartite graph has all edges in A adjacent to all vertices in B.

Subgraph

A subgraph of G has a graph whose vertex set is a subset is a subset U  of V (G) and whose
edge set is a subset of the edges in G with both endpoints in U

Path (walk version) and Theorem 4.6.2

A walk where all the vertices are distinct. If there was a walk between vertices, then there is also
a path between them

Cycle

A cycle in a graph G is a subgraph of G with n 2-regular vertices, where the vertices form a
closed walk



Path (cycle version): The subgraph obtained by removing an edge from a cycle
If every vertex in G has degree ≥ 2, then G contains a cycle
The girth g(G) of G is the length of the shortest cycle in G.

If G has no cycles, g(G) is infinite

Hamilton cycle: a spanning cycle (contains every vertex of the graph)

Equivalence Relations
A relation R between sets S and T  can be defined as a subset of S × T . We will mostly consider
relations on S, i.e. subsets of S × S

Name Definition

Reflexivity Each element in S is related to itself

Symmetry For a, b ∈ S, if a is related to b, then b is related to a

Transitivity For a, b, c ∈ S, if a, b are related and b, c are related, then a, c are related

Equivalence relation A relation that is reflexive, symmetric, and transitive

Connectedness
A graph G is connected if there is a path between any two vertices

Cut of X ⊆ V (G): set of edges in V (G) that have exactly one edge in X
G is disconnected ⟺  there exists an X ⊂ V (G) such that the cut of X is empty

Eulerian Circuits

If G is a connected graph, then it has a Eulerian circuit ⟺  every vertex has an even degree

Bridges

Component
A component of G is a subgraph C of G such that C is connected and no subgraph of G that
properly contains C is connected (essentially, a part of the graph that is completely
disconnected from the rest of it)

Eulerian Circuit

A closed walk in G that contains every edge of G exactly once.

Bridge



If e is a bridge, then G/e must have exactly two components, where each endpoint of the bridge
is in a different component
An edge e is a bridge ⟺  it is not contained in a cycle

Proof strategies
Most graph theory proofs proceed by contradiction
Also common: Induction, where the inductive case is applied recursively to neighbors
When proving directly, consider the contrapositive
Longest path argument: declare v1, v0, … vk to be the longest path in G, proceed directly or by
contradiction (by showing that it is not the longest path)

Often, show that this leads to a cycle

Try forming a tree, then use the properties of trees in the proof
If connectedness is assumed, the path between any two vertices can be used without loss of
generality

An edge e ∈ E(G) is a bridge if G/e has more components than G



Chapter 6 - Trees

Properties of Trees
A unique path exists between any two vertices u and v in a tree T
Every edge e of a tree T  is a bridge
A tree T  with n vertices has n − 1 edges

If a graph G is connected with n vertices and n − 1 edges, then G is a tree

A tree with a least two vertices has at least two leaves

Spanning Trees
A spanning tree is a spanning subgraph that is also a tree
A graph G is connected ⟺  G has a spanning tree
Adding an edge to a spanning tree produces a cycle; removing a different edge from this cycle
produces another spanning tree
If T  is a spanning tree of G and e is an edge in T , then T − e has two components

Characterizing Bipartite Graphs
A subgraph of a bipartite graph is also bipartite
Graph G is bipartite ⟺  G has no cycles of odd length

Breadth-First Search
Parent/predecessor function: pr(x) : V (T ) → V (T ) is the first vertex in the unique path from
vertex x to a given vertex u in the tree T . pr(u) is defined as ∅
Algorithm for finding a spanning tree of an arbitrary G

Select an initial vertex u and define pr(u) = ∅. This is the initial subgraph D
Until D is full, continue adding edges to D that have one vertex r in D and one vertex v
outside it. I.e. add vertex v and define pr(v) = r.
Refinement (breadth-first search): at each stage, choose an edge incident to the
unexhausted vertex that joined the tree the earliest

Trees and Forests

A tree is a connected graph with no cycles
A forest is a graph with no cycles (connectedness not required)



If |V (D)| = |V (G)| when the algorithm terminates, D is a spanning tree. Otherwise, G is
disconnected and no spanning tree exists
BFS Search tree: spanning tree with directed edges from each vertex to its parent; each vertex
has a level, which is its distance from the root. Non-tree (cycle-forming) edges may be present in
the graph

Exhausted vertex: vertex that is not adjacent to a vertex outside the tree
Non-tree edges join vertices at most one level apart

Applications of BFS
A connected graph G with BFS tree T  has an odd cycle ⟺  G has a non-tree edge joining
vertices at the same level in T
The length of a shortest path from u to v in a connected graph G is equal to the level of v in any
BFS tree of G with root u

Minimum Spanning Tree

Minimum Spanning Tree: Spanning tree with minimum sum of weighted edges
Prim's Algorithm is a greedy algorithm for finding minimum spanning trees:

Let vertex v ∈ G be arbitrary; let T  be the tree that consists of only v. While T  is not a
spanning tree of G
Let e = uv be an edge with the smallest weight in the cut induced by V (T ), where u ∈ V (T )

and v ∉ V (T ). Add e to E(T ) and v to V (T )

Proof Strategies
Proving a graph is not bipartite: find a subgraph that is not bipartite (ex. an odd cycle). Then, by
contrapositive, the original graph cannot be bipartite either
Show that a subgraph is a tree (or has a spanning tree), then derive meaning from that



Chapter 7 - Planar Graphs
Planarity

This separates the graph into faces, including the unbounded outside one
The edges of a face are its boundary
Faces that share a boundary are adjacent
Degree: number of edges in the boundary walk

A boundary will be counted twice when determining degree if it is a bridge
If there are multiple components, then the degree is the sum of that of the components

Euler's Formula

For a connected graph, v − e + f = 2

Stereographic Projection
A graph G is planar ⟺  G can be drawn on a sphere
The two graphs can be converted between by stereographic projection

Platonic Solids

Planarity

A graph is planar if it can be drawn on a plane such that no edges cross and no vertices are at
the same positions. Such a drawing is a planar embedding of the graph

Faceshaking Lemma

The total degree of all the faces in the planar embedding of graph G is 2|E(G)|, i.e.
s

∑
i=1

deg(fi) = 2|E(G)|

Euler's Formula

Let G be a connected graph with k components, v vertices and e edges. If G has a planar
embedding with f faces, then v − e + f = k + 1



Platonic graph: G is platonic if it has a planar embedding where each vertex has the same
degree dv ≥ 3 and each face has the same degree df ≥ 3

There are exactly 5 platonic graphs, corresponding to the 5 platonic solids

Nonplanar Graphs
If G is cyclic, then the boundary of each face in the planar embedding of G contains a cycle
In a planar graph G with v ≥ 3 vertices and e edges, we have e ≤ 3v − 6

If G is bipartite, then we have e ≤ 2v − 4

Kuratowski's Theorem
Edge subdivision: replacing an edge with a new path with a length of at least 1

To find this subgraph, look for a long cycle and see if any connections can be made to create an
edge subdivision of K5 or K3,3

Coloring and Planar Graphs
An edge e ∈ E(G) is contracted by "shortening" it such that its ends become one vertex
k-coloring of G: function f : V (G) → C, where C is a set of "colors" of size k
A graph G is 2-colorable ⟺ G is bipartite
Kn is n-colorable, and not k-colorable for any k < n

Every planar graph is 6-colorable (6-color theorem) and 5-colorable (5-color theorem)

Dual Planar Maps

A face with degree k in G becomes a vertex of degree k in G∗

Thus, the 4-color theorem also applies to coloring the faces of planar graphs

Kuratowski's Theorem
A graph G is not planar ⟺  G has a subgraph that is an edge subdivision of K5 or K3,3

Four Color Theorem
Any planar graph G is 4-colorable

Dual graph

For a planar graph G, the dual G∗ of G is constructed replacing each face of G with a vertex and
drawing an edge between each pair of vertices whose corresponding faces were adjacent



Proof Strategies
Use handshaking/faceshaking lemma to calculate the number of edges and vertices
Average number of edges/vertices/etc.: if the average number of these is a, show that ⌊a⌋ and ⌈a⌉

edges/vertices/etc. must exist
Use e ≤ 3v − 6 and e ≤ 2v − 4 to constrain the number of edges and vertices in graphs
Planar graphs will have the following

K5 or K3,3 (Kuratowski's theorem)
e ≤ 3v − 6

More than one face ⟺  at least one cycle



Chapter 8 - Matchings
Matching

A vertex v of G is saturated by M ⟺  v is incident with an edge in M (i.e. v is in one of the
edges in M)
Maximum matching of G: the largest possible matching in G

Perfect matching of G: matching that contains every vertex of G

Job Assignment Problem: finding the maximum matching of a bipartite graph

Paths

Alternating Path: a path in G such that edges are alternately in and not in matching M
Augmenting Path: an alternating path that joins two distinct vertices that aren't saturated by M
(these are on each end of the path)
If M has an augmenting path, then it is not a maximum matching

Covers

If M and C are matchings and covers of G respectively, then |M| ≤ |C|. If |M| = |C|, then M is a
maximum matching and C is a minimum cover

König's Theorem

Algorithm for maximum matching in bipartite graphs

Matching

A matching in a graph G is a set M of G's edges such that no two edges in M have a common
end

Cover

A cover of a graph G is a set C of vertices such that every edge of G has at least one end in C

König's Theorem

In a bipartite graph, the maximum size of a matching is the minimum size of a cover



G is a graph with bipartitions A and B, and matching M
From matching M, construct X and Y

Let X̂ = {v ∈ A : v is unsaturated } Ŷ  be ∅, and pr(v) be undefined for all vertices v

For each vertex v ∈ B − Ŷ  that has an edge (u, v) with u ∈ X̂, add v to Ŷ  and set pr(v) to u

Once the last step adds no vertex to Ŷ , return the maximum matching M and the minimum cover
C = Ŷ ∪ (A − X̂)

I.e. if there is an unsaturated vertex v in Y , find an augmenting path P(v) ending at v and use it to
construct a larger matching M ′. Replace M with M ′ and reconstruct X and Y

Applications of König's Theorem
Neighbor set N(D) of D ⊆ V (G): all vertices that are incident to at least one vertex in D

If a given subset D ⊆ A has |N(D)| < |D|, then there are more vertices than possible candidates
for a member of the matching

Systems of Distinct Representatives
Divide the population into different (overlapping) groups Q1 … Qn. What is the best way to pick
representatives for each group such that the representative is in the group the represent and no
one represents two different groups?
Can be constructed as a bipartite graph A, B where A is the set of people and B are the set of
groups. Then, the optimal system is the maximal matching

Perfect Matchings in Bipartite Graphs
A bipartite graph G with bipartition A, B has a perfect matching ⟺  |A| = |B| and every D ⊆ A

satisfies |N(D)| ≥ |D|

If G is a k-regular bipartite graph with k ≥ 1, then G has a perfect matching

Edge-coloring

Hall's Theorem
A bipartite graph G with bipartition A, B has a matching saturating every vertex in A ⟺
every D ⊆ A satisfies |N(D)| ≥ |D|

Hall's SDR Theorem

The collection Q1 … Qn ⊆ Q has an SDR ⟺  for every subset J ⊆ {1, 2, … n}, we have

⋃
i∈J

Qi ≥ |J|∣ ∣



Edge k-coloring a graph relies on partitioning the graph into k matchings
A bipartite graph with maximum degree δ has an edge δ-coloring
Let G be a bipartite graph having at least one edge. Then G has a matching saturating each
vertex of maximum degree
Application to timetabling: coloring the edges of a bipartite graph where A are the activities and B
are the people doing the activities
Bound edge-coloring problem: what is the smallest number of colors needed to edge-color a
bipartite graph if no color can be assigned to more than m edges?

Proof Strategies
Consider the consequence of all theorems that relate vertices and edges

I.e. Handshaking/faceshaking lemmas, Euler's theorem, |V | = |E| + 1 for trees, etc.

To show a perfect matching, assume none, then build augmenting path (for contradiction)
Convert between cover and matching using |M| = |C| condition
If M is a maximum matching, then there is no edge with 2 unsaturated vertices, so the set of
saturated vertices is a cover
If a matching M is a maximum matching, then (by contradiction) there is no v = (a, b) ∈ V  such
that neither a nor b are unsaturated. Thus, the saturated vertices must form a cover

Theorem 8.8.1

Let G be a graph with e edges and let k, m ∈ N
+ such that G has an edge k-coloring and q ≤ km.

Then G has a k-coloring in which every color is used at most m times.


